2.1 1.1b
1.1b
1.1b
3.4
1.1b
3.4
1.1b
marks)
n

Paper 4F: Further Mechanics 2 Mark Scheme

Scheme	Marks	AOs
$\langle 4a \rangle$		
$4a \qquad \qquad$		
Complete overall strategy	M1	3.1b
Resolve vertically	M1	3.3
$mg + F\cos\theta = R\sin\theta$	A1	1.1b
Horizontal equation of motion	M1	3.3
$mr\omega^2 = R\cos\theta + F\sin\theta$	A1	1.1b
Use of limiting friction since maximum ω	M1	3.3
Substitute for trig ratios: $\frac{3a\omega^2}{2g} = \frac{9}{2}$	M1	1.1b
Maximum $\omega = \sqrt{\frac{3g}{a}}$	A1	1.1b
	(8 m	arks)

- A1: Correct unsimplified equation
- M1: Needs all 3 terms. Condone sign errors and sin/cos confusion
- A1: Correct unsimplified equation
- M1: Seen or implied
- M1: Substitute to achieve equation in a, ω and g only
- A1: Or equivalent exact form

estion Scheme Marks AOs (a) $\frac{1}{(2)} \frac{1}{(2)} \frac{1}{$						MWW. MY
(a) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	uestion	Scheme			Marks	AOs
(b) $\frac{\begin{vmatrix} cy inder & 4\pi a^3 h & \frac{h}{2} \\ hemisphere & \frac{2}{3}\pi a^3 & \frac{3}{8}a \\ \hline V & 4\pi a^3 h - \frac{2}{3}\pi a^3 & d \\ \hline Mass ratios & B1 & 1.2 \\ \hline Moments about a diameter through O & M1 & 2.1 \\ \hline 4\pi a^3 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d & A1 & 1.1b \\ \hline d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} \times A1^* & 2.2a \\ \hline (b) & (5) \\ \hline h = 5a \Rightarrow d = 2.573a & B1 & 1.1b \\ \hline About to topple so c of m above tipping point & M1 & 2.2a \\ \hline \Rightarrow \tan \phi = \frac{2a}{5a - 2.573a} & A1ft & 1.1b \\ \hline \phi = 39.5^\circ \text{ or } 0.689 \text{ rads} & A1 & 1.1b \\ \hline (4) & (4) & (4) \\ \hline \end{vmatrix}$	3(a)		mass	c of m from O		
(b) $hemisphere \qquad \frac{2}{3\pi a^3} \qquad \frac{3}{8} \frac{a}{8} a$		cylinder	$4\pi a^2 h$	$\frac{h}{2}$		
(b) $ \frac{3}{V} + \frac{3}{4\pi a^{2}h - \frac{2}{3}\pi a^{3}} + \frac{8}{d}}{4\pi a^{2}h - \frac{2}{3}\pi a^{3}} + \frac{8}{d}} $ Mass ratios Correct distances H1 1.2 Moments about a diameter through O $4\pi a^{2}h \times \frac{h}{2} - \frac{2}{3}\pi a^{3} \times \frac{3}{8}a = 2\pi a^{2}\left(2h - \frac{1}{3}a\right) \times d$ $d = \frac{h^{2} - \frac{a^{2}}{8}}{2h - \frac{a}{3}} = \frac{3(8h^{2} - a^{2})}{8(6h - a)} + A1^{*}$ (b) $h = 5a \Rightarrow d = 2.573a$ $h = 5a \Rightarrow d = 2.573a$ h = 1.1b About to topple so c of m above tipping point $h = 5a \Rightarrow tan \phi = \frac{2a}{5a - 2.573a}$ h = 1.1b h = 1		hemisphere	$\frac{2}{2}\pi a^3$	$\frac{2}{\frac{3}{a}}$		
(b) $ \frac{4\pi a^2 h - \frac{2}{3}\pi a^2}{d} = \frac{1.2}{d} $ Mass ratios B1 1.2 Moments about a diameter through O M1 2.1 $ \frac{4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d$ A1 1.1b $ \frac{d}{d} = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} \times A1^* \qquad 2.2a$ (5) (b) $ \frac{h = 5a \Rightarrow d = 2.573a}{5a} = \frac{1.1b}{2a} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ About to topple so c of m above tipping point $ \frac{h = 5a \Rightarrow d = 2.573a}{6a - 2.573.a} = A1ft \qquad 1.1b$ About to topple so c of m above tipping point $ \frac{d}{d} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ About to topple so c of m above tipping point $ \frac{d}{d} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ A function to topple so c of m above tipping point $ \frac{d}{d} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ A function to topple so c of m above tipping point $ \frac{d}{d} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ A function to topple so c of m above tipping point $ \frac{d}{d} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ A function to topple so c of m above tipping point $ \frac{d}{d} = \frac{2a}{5a - 2.573a} = A1ft \qquad 1.1b$ A function to topple so c of m above tipping point $ \frac{d}{d} = \frac{a}{5a - 2.573a} = A1ft \qquad 1.1b$ A function topple so c of m above tipping point $ \frac{d}{d} = \frac{a}{5a - 2.5773a} = A1ft \qquad 1.1b$ A function topple so c of m above tipping point $ \frac{d}{d} = \frac{a}{5a - 2.5773a} = A1ft \qquad 1.1b$ A function topple so c of m above tipping point $ \frac{d}{d} = \frac{a}{5a - 2.5773a} = A1ft \qquad 1.1b$ A function topple so c of m above tipping point $ \frac{d}{d} = \frac{a}{5a - 2.5773a} = A1ft \qquad 1.1b$ A function topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m above tipping point A function to topple so c of m abov			3	8		
Mass ratios B1 1.2 Correct distances B1 1.2 Moments about a diameter through O M1 2.1 $ \frac{4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d \qquad A1 \qquad 1.1b$ $ \frac{d}{d} = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} * \qquad A1^* \qquad 2.2a$ (b) (c) $ \frac{h = 5a \Rightarrow d = 2.573a}{2a} \qquad B1 \qquad 1.1b$ About to topple so c of m above tipping point M1 2.2a $ \frac{h = 5a \Rightarrow d = 2.573a}{5a - 2.573a} \qquad A1ft \qquad 1.1b$ $ \frac{d = \frac{2a}{5a - 2.573a}}{6a - 2.573a} \qquad A1ft \qquad 1.1b$			$4\pi a^2 h - \frac{-\pi}{3}\pi a^3$	d		
Correct distances B1 1.2 Moments about a diameter through O M1 2.1 $4\pi a^2h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d$ A1 1.1b $d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} *$ A1* 2.2a (b) (5) $h = 5a \Rightarrow d = 2.573a$ B1 1.1b About to topple so c of m above tipping point M1 2.2a $\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1 1.1b $\phi = 39.5^\circ$ or 0.689 rads A1 1.1b		Mass ratios			B1	1.2
Moments about a diameter through O $ \frac{4\pi a^{2}h \times \frac{h}{2} - \frac{2}{3}\pi a^{3} \times \frac{3}{8}a = 2\pi a^{2} \left(2h - \frac{1}{3}a\right) \times d $ A1		Correct distances			B1	1.2
$\frac{4\pi a^{2}h \times \frac{h}{2} - \frac{2}{3}\pi a^{3} \times \frac{3}{8}a = 2\pi a^{2} \left(2h - \frac{1}{3}a\right) \times d \qquad A1 \qquad 1.1b$ $\frac{d}{d} = \frac{h^{2} - \frac{a^{2}}{8}}{2h - \frac{a}{3}} = \frac{3\left(8h^{2} - a^{2}\right)}{8\left(6h - a\right)} \times A1 \times A1 \times 2.2a$ (b) $\frac{f(b)}{\int_{a}} \int_{a} $		Moments about a diameter through O			M1	2.1
$d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} * $ (5) (b) (b) $h = 5a \Rightarrow d = 2.573a$ $h = 5a \Rightarrow d$		$4\pi a^{2}h \times \frac{h}{2} - \frac{2}{3}\pi a^{3} \times \frac{3}{8}a = 2\pi a^{2}\left(2h - \frac{1}{3}a\right) \times d$			A1	1.1b
(b) $h = 5a \Rightarrow d = 2.573a$ $h = 5a \Rightarrow d = 2$		$d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} *$			A1*	2.2a
(b) $h = 5a \Rightarrow d = 2.573a$ $h = 1.1b$ $h = 2a$ $h =$					(5)	
$h = 5a \Rightarrow d = 2.573a$ B11.1bAbout to topple so c of m above tipping pointM12.2a $\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft1.1b $\phi = 39.5^{\circ}$ or 0.689 radsA11.1b(4)(4)	(b)	2.57 <i>a</i> 5 <i>a \$</i> <i>\$</i> <i>\$</i> <i>\$</i> <i>\$</i> <i>\$</i> <i>\$</i> <i>\$</i> <i>\$</i>				
About to topple so c of m above tipping pointM12.2a $\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft1.1b $\phi = 39.5^{\circ}$ or 0.689 radsA11.1b(4)(4)		$h = 5a \Longrightarrow d = 2.57$	$h = 5a \Longrightarrow d = 2.573a$			1.1b
$\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft 1.1b $\phi = 39.5^{\circ} \text{ or } 0.689 \text{ rads}$ A1 1.1b (4)		About to topple so	About to topple so c of m above tipping point			2.2a
$\phi = 39.5^{\circ} \text{ or } 0.689 \text{ rads}$ A1 1.1b (4)		\Rightarrow ta	$an \phi = \frac{2a}{5a - 2.573a}$		Alft	1.1b
(4)			$\phi = 39$.5° or 0.689 rads	Al	1.1b
					(4)	• `

Question 3 notes:

- **(a)**
- **B1:** Correct mass ratios
- **B1:** Correct distances
- M1: All three terms & dimensionally correct. Could use a parallel axis but final answer must be for the distance from *O*

www.mymathscloud.com

- A1: Correct unsimplified equation
- A1*: Deduce the given answer. Their working must make it clear how they reached their answer

(b)

- **B1:** Distance of com from base
- M1: Condone tan the wrong way up
- A1ft: Correct unsimplified expression for trig ratio for ϕ following their d
- A1: 39.5° or 0.689 rads

			www.myn
Question	Scheme	Marks	AOs
4(a)	Equation of motion: $1800 - 2v^2 = 500a$ (when seen)	B1	2.1
	Select form for a: $=500 \frac{dv}{dt}$	M1	2.5
	$\int \frac{2}{500} dt = \int \frac{1}{900 - v^2} dv = \frac{1}{60} \int \frac{1}{30 + v} + \frac{1}{30 - v} dv$	M1	2.1
	$\frac{t}{250} = \frac{1}{60} \ln (30 + v) - \frac{1}{60} \ln (30 - v) (+C)$	A1	1.1b
	$T = \frac{25}{6} \ln \left(\frac{30 + 10}{30 - 10}\right) = \frac{25}{6} \ln 2 *$	M1 A1*	2.1 2.2a
		(6)	
(b)	Equation of motion: $500v \frac{dv}{dx} = 1800 - 2v^2$	M1	2.5
	$\int \frac{500v}{1800 - 2v^2} \mathrm{d}v = \int 1 \mathrm{d}x$	M1	2.1
	$-125\ln(1800 - 2v^2) = x \ (+C)$	A1	1.1b
	Use boundary conditions: $x = -125 \ln 1600 + 125 \ln 1800$	M1	2.1
	$x = 125 \ln \frac{9}{8} (m)$ *	A1*	2.2a
		(5)	
		(11 r	narks)
a) 31: All M1: Use M1: Sepa M1: Con M1: Use M1: Use M1: Sho has	three terms & dimensionally correct of correct form for acceleration to give equation in v , t only arate variables and integrate done missing C boundary conditions correctly w sufficient working to justify given answer and a 'statement' that the been achieved	e required r	esult
(b) M1: Corr M1: Sepa A1: Con M1: Extr A1*: Sho	rect form of acceleration in the equation of motion to give equation in arate variables and integrate done missing C ract and use boundary conditions w sufficient working to justify given answer and a 'statement' that the	v, x only	esult

A1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved

				W	ww.myma
Question		Scheme		Marks	AOs
5(a)		Mass	From AD		
	Rectangle	8 <i>a</i> ²	а		
	Semicircle	$\frac{1}{2}\pi a^2$	$\frac{4a}{3\pi}$		
	Sign	$a^2\left(8-\frac{\pi}{2}\right)$	h		
	Mass ratios			B1	1.2
	Moments about AD			M1	2.1
	$a^2\left(8-\frac{\pi}{2}\right)h=8a^2$	A1	1.1b		
	$\Rightarrow h = \frac{22}{3}a \div \left(8 - \frac{\pi}{2}\right) = \frac{44a}{3(16 - \pi)} *$			A1*	2.2a
			/	(4)	
(b)	Moments about A $2aT = \frac{44a}{3(16 - \pi)}W$			M1	3.1b
	$T = \frac{hW}{2a} = \frac{22W}{3(16-\pi)}$				1.1b
				(2)	
(c)					
	Take moments about <i>AB</i> to find distance of com from <i>AB</i>				3.1b
	$8a^{2} \times 2a - \frac{1}{2}\pi a^{2} \times d = \left(8 - \frac{1}{2}\pi\right)a^{2} \times v$				1.1b
	$v = \frac{32a - \pi d}{16 - \pi}$				1.1b
	Correct trig for the given angle			M1	3.1b
	$\tan \alpha = \frac{11}{18} = \frac{h}{v} = \frac{44a}{3(32a - \pi d)}$			A1ft	1.1b
	$(24a = 32a - \pi d, 8a)$	$d = \pi d$) $d = \frac{8a}{\pi}$		A1	1.1b
				(6)	
					narks)

	mu
	.mym
Quest	ion 5 notes:
(a)	
B1:	Correct mass ratios
M1:	Need all three terms, must be dimensionally correct
Al:	Correct unsimplified equation
A1*:	Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved
(b)	
M1:	Could also take moments about B or about the c.o.m. and use
A1:	CSO
(c)	
M1:	All terms and dimensionally correct
A1:	Correct unsimplified equation
A1:	Or equivalent
M1:	Condone tan the wrong way up
A1:	Equation in a and d; follow through on their v
A1:	cao

			M. M.
uestion	Scheme	Marks	AOs
6(a)	O θ a a $\sqrt{\frac{7}{2}ga}$		
	Conservation of energy	M1	2.1
	$\frac{1}{2}mv^2 + mga(1 - \cos\theta) = \frac{1}{2}m\left(\frac{7}{2}ga\right)$	A1	1.1b
	$v^2 = ga\left(\frac{3}{2} + 2\cos\theta\right) *$	A1*	2.2a
		(3)	
(b)	Resolve parallel to <i>OB</i> and use $\frac{mv^2}{a}$	M1	3.1b
	$R - mg\cos\theta = \frac{mv^2}{a}$	A1	1.1b
	Use R= 0 $g\cos\theta = -\frac{v^2}{a}$	M1	3.1b
	Solve for $\theta \implies g\cos\theta = -g\left(\frac{3}{2} + 2\cos\theta\right)$	M1	1.1b
	$\theta = 120^{\circ}$	A1	1.1b
		(5)	
	Any appropriate comment e.g. the hoop is unlikely to be smooth	B1	3.5b
(C)		(1)	

			mn			
			"Ny			
Questio	n Scheme	Marks	AOs			
6(d)	At rest $\Rightarrow v = 0$	M1	3.1b			
	$\Rightarrow \cos\theta = -\frac{3}{4}$	A1	1.1b			
	Acceleration is tangential	M1	3.1b			
	Magnitude $ g\cos(\theta - 90) = 6.48 \text{ m s}^{-2} \text{ or } \frac{\sqrt{7}}{4}g$	A1	1.1b			
	At $\left(\cos^{-1}\left(-\frac{3}{4}\right)-90=\right)48.6^{\circ}$ to the downward vertical	A1	1.1b			
		(5)				
	(14 marks)					
Questio	n 6 notes:					
(a) M1: A A1: C A1*: S	Il terms required. Must be dimensionally correct orrect unsimplified equation how sufficient working to justify the given answer and a 'statement' esult has been achieved	that the requir	ed			
(b) M1: R A1: C M1: U M1: S A1: A	esolve parallel to <i>OB</i> orrect equation (se $R = 0$ seen or implied olve for θ (ccept $\frac{2\pi}{3}$)					
(c) B1: A -	ny appropriate comment e.g. hoop may not be smooth; air resistance could affect the motion					
(d) M1: v A1: C M1: C A1: A A1: A	= 0 seen or implied orrect equation in θ orrect direction for acceleration .ccept 6.48, 6.5 or exact in g .ccept 0.848 (radians)					

			mm.ny
Question	Scheme	Marks	AOs
7(a)	<→ 6m>		
	A 20 N 50 N B		
	$T_{A} = \frac{20e}{2}, \ T_{B} = \frac{50(2-e)}{2} e$	M1	3.1a
	In equilibrium $T_A = T_B$, $10e = 25(2-e)$	M1	3.1a
	$(35e=50), e=\frac{10}{7}$	A1	1.1b
	Equation of motion for <i>P</i> when distance <i>x</i> from equilibrium position towards <i>B</i> :	M1	3.1a
	$3.5\ddot{x} = T_B - T_A = \frac{50(2 - e - x)}{2} - \frac{20(e + x)}{2}$	A1 A1	1.1b 1.1b
	$=\frac{50\left(\frac{4}{7}-x\right)}{2}-\frac{20\left(\frac{10}{7}+x\right)}{2}$		
	$\Rightarrow 3.5\ddot{x} = -35x, \ddot{x} = -10x$ and hence SHM about the equilibrium position	A1	3.2a
		(7)	
(b)	$\text{Amplitude} = 2 - \frac{10}{7} = \frac{4}{7}$	B1 ft	2.2a
	Use of max speed = $a \omega$	M1	1.1b
	$=\frac{4}{7}\sqrt{10}=1.81 \ (\mathrm{m \ s^{-1}})$	A1 ft	1.1b
		(3)	

			mm.myr			
Question	Scheme	Marks	AOs			
7(c)	Nearer to A than to B: $x < -\frac{3}{7}$	B1	3.1a			
	Solve for $\sqrt{10t}$: $\cos \sqrt{10t} = -\frac{3}{4}$, $\sqrt{10t} = 2.418$	M1	3.1a			
	Length of time: $\frac{2}{\sqrt{10}} (\pi - 2.418)$	M1	1.1b			
	0.457 (seconds)	A1	1.1b			
	Alternative: $\frac{3.864 - 2.419}{\sqrt{10}} = 0.457$					
	Alternative: $x = \frac{4}{7} \sin \sqrt{10}t = \frac{3}{7} \implies \sqrt{10}t = 0.8481 \text{ or } \sqrt{10}t = 2.29353$					
	$t_1 = 0.2682, \ t_2 = 0.72527$					
	\Rightarrow time = 0.457 (seconds)					
		(4)				
Notes	(14 marks)					
(a) M1: Us M1: De A1: cao M1: Co	e of $T = \frac{\lambda x}{a}$ pendent on the preceding M1. Equate their tensions on done sign error					
A1: Co Eq A1: Fu	rect unsimplified equation in e and x A1A1 ation with one error A1A0 working to justify conclusion that it is SHM about the equilibrium position					
(b) B1ft: Se M1: Co A1ft: 1.5	en or implied. Follow their e rrect method for max. speed 1 or better. Follow their a, ω					
(c) B1: Sec M1: Us M1: Co A1: 0.4	en or implied e of $x = a \cos wt$ rrect strategy for the required interval 57 or better					

