Paper 4F: Further Mechanics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Total mass $=\int_{0}^{15} 10\left(1-\frac{x}{25}\right) \mathrm{d} x$	M1	2.1
	$=\left[10 x-\frac{x^{2}}{5}\right]_{0}^{15}$	A1	1.1b
	$=150-\frac{225}{5}=105(\mathrm{~kg})$ *	A1*	1.1 b
		(3)	
(b)	Taking moments about the base: $\int_{0}^{15} 10 x\left(1-\frac{x}{25}\right) \mathrm{d} x$	M1	3.4
	$=\left[5 x^{2}-\frac{2}{15} x^{3}\right]_{0}^{15}(=675)$	A1	1.1b
	$\Rightarrow 105 d=675$	M1	3.4
	$d=6.43$ (m) $6 \frac{3}{7}(\mathrm{~m})$	A1	1.1b
		(4)	
(7 marks)			
Notes:			
(a) M1: Use integration (usual rules) A1: Correct integration A1*: Use limits and show sufficient working to justify given answer			
(b) M1: Use the model to find the moment about the base (usual rules for integration) A1: Correct integration M1: Use the model to complete the moments equation Require 105 and their 675 used correctly A1: $\quad 6.43$ or better			

Question	Marks	AOs	
2			

Question 3 notes:

(a)

B1: Correct mass ratios
B1: Correct distances
M1: All three terms \& dimensionally correct. Could use a parallel axis but final answer must be for the distance from O
A1: Correct unsimplified equation
A1*: Deduce the given answer. Their working must make it clear how they reached their answer
(b)

B1: Distance of com from base
M1: Condone tan the wrong way up
A1ft: Correct unsimplified expression for trig ratio for ϕ following their d
A1: $\quad 39.5^{\circ}$ or 0.689 rads

Question	Scheme	Marks	AOs
4(a)	Equation of motion: $1800-2 v^{2}=500 a$ (when seen)	B1	2.1
	Select form for a : $=500 \frac{\mathrm{~d} v}{\mathrm{~d} t}$	M1	2.5
	$\int \frac{2}{500} \mathrm{~d} t=\int \frac{1}{900-v^{2}} \mathrm{~d} v=\frac{1}{60} \int \frac{1}{30+v}+\frac{1}{30-v} \mathrm{~d} v$	M1	2.1
	$\frac{t}{250}=\frac{1}{60} \ln (30+v)-\frac{1}{60} \ln (30-v)(+C)$	A1	1.1b
	$T=\frac{25}{6} \ln \left(\frac{30+10}{30-10}\right)=\frac{25}{6} \ln 2$ *	$\begin{gathered} \text { M1 } \\ \text { A1* } \end{gathered}$	$\begin{gathered} 2.1 \\ 2.2 \mathrm{a} \end{gathered}$
		(6)	
(b)	Equation of motion: $500 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=1800-2 v^{2}$	M1	2.5
	$\int \frac{500 v}{1800-2 v^{2}} \mathrm{~d} v=\int 1 \mathrm{~d} x$	M1	2.1
	$-125 \ln \left(1800-2 v^{2}\right)=x(+C)$	A1	1.1b
	Use boundary conditions: $\quad x=-125 \ln 1600+125 \ln 1800$	M1	2.1
	$x=125 \ln \frac{9}{8}(\mathrm{~m}) \quad *$	A1*	2.2a
		(5)	
(11 marks)			
Notes:			
(a)			
B1: All three terms \& dimensionally correct			
M1: Use of correct form for acceleration to give equation in v, t only			
M1: Separate variables and integrate			
A1: Condone missing C			
M1: Use boundary conditions correctly			
1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved			
(b)			
M1: Correct form of acceleration in the equation of motion to give equation in v, x only			
M1: Separate variables and integrate			
A1: Condone missing C			
M1: Extract and use boundary conditions			
1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved			

Question 5 notes:

(a)

B1: Correct mass ratios
M1: Need all three terms, must be dimensionally correct
A1: Correct unsimplified equation
A1*: Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved
(b)

M1: Could also take moments about B or about the c.o.m. and use
A1: cso
(c)

M1: All terms and dimensionally correct
A1: Correct unsimplified equation
A1: Or equivalent
M1: Condone tan the wrong way up
A1: Equation in a and d; follow through on their v
A1: cao

Question	Scheme	Marks	AOs
6(a)			
	Conservation of energy	M1	2.1
	$\frac{1}{2} m \nu^{2}+m g a(1-\cos \theta)=\frac{1}{2} m\left(\frac{7}{2} g a\right)$	A1	1.1b
	$\nu^{2}=g a\left(\frac{3}{2}+2 \cos \theta\right) *$	A1*	2.2a
		(3)	
(b)	Resolve parallel to $O B$ and use $\frac{m v^{2}}{a}$	M1	3.1b
	$R-m g \cos \theta=\frac{m v^{2}}{a}$	A1	1.1b
	Use $\mathrm{R}=0 \quad g \cos \theta=-\frac{v^{2}}{a}$	M1	3.1b
	Solve for $\theta \Rightarrow g \cos \theta=-g\left(\frac{3}{2}+2 \cos \theta\right)$	M1	1.1b
	$\theta=120^{\circ}$	A1	1.1b
		(5)	
(c)	Any appropriate comment e.g. the hoop is unlikely to be smooth	B1	3.5b
		(1)	

Question	Scheme	Marks	AOs
6(d)	At rest $\Rightarrow v=0$	M1	3.1b
	$\Rightarrow \cos \theta=-\frac{3}{4}$	A1	1.1b
	Acceleration is tangential	M1	3.1b
	Magnitude $\|g \cos (\theta-90)\|=6.48 \mathrm{~m} \mathrm{~s}^{-2}$ or $\frac{\sqrt{7}}{4} g$	A1	1.1b
	At $\left(\cos ^{-1}\left(-\frac{3}{4}\right)-90=\right) 48.6^{\circ}$ to the downward vertical	A1	1.1b
		(5)	
(14 marks)			
Question 6 notes:			
(a) M1: All terms required. Must be dimensionally correct A1: Correct unsimplified equation A1*: Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved			
(b) M1: Resolve parallel to $O B$ A1: Correct equation M1: Use $R=0$ seen or implied M1: \quad Solve for θ A1: \quad Accept $\frac{2 \pi}{3}$			
(c) B1: Any appropriate comment e.g. - hoop may not be smooth; - air resistance could affect the motion			
(d) M1: $\quad v=0$ seen or implied A1: \quad Correct equation in θ M1: Correct direction for acceleration A1: Accept $6.48,6.5$ or exact in g A1: Accept 0.848 (radians)			

Question	Scheme	Marks	AOs
7(a)			
	$T_{A}=\frac{20 e}{2}, T_{B}=\frac{50(2-e)}{2} e$	M1	3.1a
	In equilibrium $T_{A}=T_{B}, 10 e=25(2-e)$	M1	3.1a
	$(35 e=50), \quad e=\frac{10}{7}$	A1	1.1b
	Equation of motion for P when distance x from equilibrium position towards B :	M1	3.1a
	$3.5 \ddot{x}=T_{B}-T_{A}=\frac{50(2-e-x)}{2}-\frac{20(e+x)}{2}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=\frac{50\left(\frac{4}{7}-x\right)}{2}-\frac{20\left(\frac{10}{7}+x\right)}{2}$		
	$\Rightarrow 3.5 \ddot{x}=-35 x, \quad \ddot{x}=-10 x$ and hence SHM about the equilibrium position	A1	3.2a
		(7)	
(b)	Amplitude $=2-\frac{10}{7}=\frac{4}{7}$	B1 ft	2.2a
	Use of max speed $=a \omega$	M1	1.1b
	$=\frac{4}{7} \sqrt{10}=1.81\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1 ft	1.1b
		(3)	

Question	Scheme	Marks	AOs
7(c)	Nearer to A than to $B: x<-\frac{3}{7}$	B1	3.1a
	Solve for $\sqrt{10} t: \cos \sqrt{10} t=-\frac{3}{4}, \sqrt{10} t=2.418 \ldots \ldots \ldots \ldots$	M1	3.1a
	Length of time: $\frac{2}{\sqrt{10}}(\pi-2.418 . .$.	M1	1.1b
	0.457 (seconds)	A1	1.1b
	Alternative: $\frac{3.864-2.419}{\sqrt{10}}=0.457$		
	Alternative: $\begin{aligned} x=\frac{4}{7} \sin \sqrt{10} t=\frac{3}{7} & \Rightarrow \sqrt{10} t=0.8481 \text { or } \sqrt{10} t=2.29353 \\ t_{1}= & 0.2682, t_{2}=0.72527 \\ & \Rightarrow \text { time }=0.457 \text { (seconds) } \end{aligned}$		
		(4)	
(14 marks)			
Notes:			
(a)			
M1: Use of $T=\frac{\lambda x}{a}$			
M1: Dependent on the preceding M1. Equate their tensions			
M1: Condone sign error			
A1:	ect unsimplified equation in e and x A1A1 tion with one error A1A0		
A1: Full working to justify conclusion that it is SHM about the equilibrium position			
(b)			
B1ft: Seen or implied. Follow their e			
M1: Correct method for max. speed			
A1ft: 1.81 or better. Follow their a, ω			
(c)			
B1: Seen or implied			
M1: Use of $x=a \cos w t$			
M1: Correct strategy for the required interval			
A1: 0.457 or better			

